

Feb 19-8:47 AM

$$
\begin{aligned}
& \text { Given } f(x)=\frac{x^{2}-1}{x^{2}+1} \\
& x^{2}+1 \neq 0, \text { Domain: }(-\infty, \infty) \\
& f(-x)=\frac{(-x)^{2}-1}{(-x)^{2}+1}=\frac{x^{2}-1}{x^{2}+1}=f(x) \rightarrow f(x) \text { even function } \\
& \text { sym. w/t Y-axis } \\
& Y-\text { Int } \rightarrow x=0 \rightarrow f(0)=-1 \rightarrow Y-\operatorname{Int}(0,-1) \\
& x-\text { Int. } \rightarrow f(x)=0 \rightarrow x^{2}-1=0 \rightarrow x-\operatorname{Int}(\pm 1,0) \\
& \rightarrow \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{2}+1}=1 \\
& \hdashline-1 \quad \lim _{x \rightarrow-\infty} f(x)=1 \quad \text { H.A. } \\
& \hdashline-1
\end{aligned}
$$

\qquad

Nov 14-10:32 AM

$$
\begin{aligned}
& \text { Solve } \quad x^{6}=2 \\
& x^{6}-2=0 \\
& f(x)=x^{6}-2 \quad f^{\prime}(x)=6 x^{5} \\
& \text { Newton's equation } \\
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{6}-2}{6 x_{n}^{5}} \\
& x_{n+1}=\frac{6 x_{n}^{6}-x_{n}^{6}+2}{6 x_{n}^{5}} \Rightarrow x_{n+1}=\frac{5 x_{n}^{6}+2}{6 x_{n}^{5}} \\
& \text { Suppose our first guess is } 1 \rightarrow x_{1}=1 \\
& x_{2}=\frac{5(7)^{6}+2}{6(7)^{5}}=\frac{7}{6}=1.17 \\
& x_{3}=\frac{5(1.17)^{6}+2}{6(1.17)^{5}}=1.13 \\
& x_{4}=\frac{5(1.13)^{6}+2}{6(1.13)^{5}}=1.12 \\
& \text { Sown } \rightarrow 1.12 \\
& x_{5}=\frac{5(1.12)^{6}+2}{6(1.12)^{5}}=1.12 \quad \text { check } \\
& 1.12^{6}=1.9738 \ldots \\
& \approx 2
\end{aligned}
$$

\qquad

Nov 14-10:54 AM

$$
\begin{aligned}
& \text { Solve } x^{5}-x-1=0 \text { using Newton's method } \\
& \text { with } x_{1}=1 \text {. Newton's en } \\
& \begin{array}{l}
f(x)=x^{5}-x-1 \quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
f^{\prime}(x)=5 x^{4}-1
\end{array} \\
& \begin{array}{ll}
f^{\prime}(x)=5 x^{4}-1 \quad & x_{n+1}=x_{n}\left(x_{n}\right) \\
x_{n+1}=x_{n}-\frac{x_{n}^{5}-x_{n}-1}{5 x_{n}^{4}-1}
\end{array} \\
& x_{n+1}=\frac{x_{n}\left(5 x_{n}^{4}-1\right)-\left(x_{n}^{5}-x_{n}-1\right)}{5 x_{n}^{4}-1} \\
& x_{n+1}=\frac{4 x_{n}^{5}+1}{5 x_{n}^{4}-1} \text { with } x_{1}=1 \\
& x_{2}=\frac{4(1)^{5}+1}{5(1)^{4}-1}=\frac{5}{4}=1.25 \\
& x_{3}=\frac{4(1.25)^{5}+1}{5(1.25)^{4}-1}=1.18 \\
& x_{4}=\frac{4(1.18)^{5}+1}{5(1.18)^{4}-1}=1.17 \\
& \begin{aligned}
& x_{5}=\frac{5(1.17)^{5}+1}{5(1.17)^{4}-1}=1.17 \Rightarrow \text { Sol } x=1.17 \\
& \text { check } \\
& 1.17^{5}-1.17-1=.022 \ldots
\end{aligned} \\
& \approx 0
\end{aligned}
$$

\qquad
\qquad
$f(x)=x-\cos x \Rightarrow$ Newton's eqn
$f^{\prime}(x)=1+\sin x \quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$x_{2}=\frac{1 \cdot \operatorname{Sin} 1+\cos 1}{1+\sin 1}=.75$

$$
x_{3}=\frac{.75 \operatorname{Sin} .75+\operatorname{Cos} .75}{1+\operatorname{Sin} .75}=.74
$$

$$
\Rightarrow S o l n \quad x=.74
$$

\qquad
\qquad
\qquad

Nov 14-11:14 AM

